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Abstract In this paper, we start by studying the scalar curvature of two Riemannian manifolds
admitting a Riemannian submersion. We establish a series of inequalities for Riemannian submersions.
By using these inequalities, we derive several characterizations for Riemannian submersions. We show
that the necessary conditions for a Riemannian submersion to be harmonic is to either have totally
geodesic fibres or integrable horizontal distribution.
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1 Introduction

The theory of smooth maps between Riemannian manifolds plays a significant role in
differential geometry since these maps are useful to compare various geometric prop-
erties between Riemannian manifolds. The best known of such maps are isometric
immersions and Riemannian submersions. The origins of the theory of isometric im-
mersions and of the submanifold geometry can be traced back to the 1827 seminal
paper written by C. F. Gauss on surfaces in the three dimensional Euclidean space
in [12]. Pursuing an idea of M. Janet in [14] and E. Cartan in [3], J. F. Nash [16]
proved a theorem generated as a revolution for Riemannian manifolds in 1956 that
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every Riemannian n-manifold can be isometrically embedded in any small portion of
a Euclidean spaces Em with m = n

2 (n+ 1)(3n+ 11). From the Nash’s embedding the-
orem, one of basic problems in submanifolds theory is to find simple relations between
the intrinsic invariants and the extrinsic invariants of a Riemannian submanifold.

In 1973, B.-Y. Chen and M. Okumura [10] showed that if M is a n-dimensional
submanifold of a real space form of constant curvature c such that the scalar curvature
τ and the squared second fundamental form |σ|2 satisfy the inequality

2τ ≥ (n− 2) |σ|2 + (n− 2)(n− 1)c (1.1)

at a point p ∈M , then the sectional curvatures of M are nonnegative at p.
In 1996, B.-Y. Chen [5] obtained a substantial inequality for a n− dimensional

submanifold of a real space form Rm(c), which involves the scalar curvature and the
squared mean curvature. He proved that at every point p ∈ M , the scalar curvature
τ and the squared mean curvature |H|2 of M satisfy

τ ≤ 1

2
n(n− 1) |H|2 +

1

2
n(n− 1)c, (1.2)

with equality holding if and only if p is a totally umbilical point.
In literature, these types inequalities are known as Chen-like inequalities or Chen

inequalities.
On the other hand, the theory of Riemannian submersion goes back to five decades

ago, when B. O’Neill [17] and A. Gray [13] formulated the basis of such theory, which
has hugely developed in the three decades. Also, B. O’Neill [17] introduced and studied
two tensor fields for Riemannian submersions corresponding to second fundamental
form and shape operator in isometric immersions which are known as O’Neill tensors.
Then, he gave some relations involving sectional curvatures of two manifolds admitting
a Riemannian submersion. Later, Riemannian submersions have been studied widely
by various mathematicians, motivated be the importance and the applications of these
maps in mathematical physics. In particular, in Kaluza-Klein theory, Riemannian
submersions are general class of solutions of the model can be expressed in terms of
harmonic maps satisfyng Einstein equations. One can see details of this result in [11].

In [9], B.-Y. Chen established an inequality for Riemannian submersions as follows:
Let π : M → B be a Riemannian submersion with totally geodesic fibres. Then,

for any isometric immersion of M into a Riemannian m manifold Rm(c) of constant
sectional curvature c,

Ǎπ ≤
n2

4
|H|2 + b(n− b)c, (1.3)

where Ǎπ =
m∑
i=1

m∑
s=b+1

‖AXi
Vs‖2, {X1, . . . , Xb} is an orthonormal basis of horizontal

space and {Vb+1, . . . , Vm} is an orthonormal basis of vertical space.
In [1], P. Alegre, B.-Y. Chen and M. I. Munteanu gave an optimal equality involving

δ-invariants for submanifolds of the complex projective space CPm (4) via Hopf’s
fibration π : S2m+1 → CPm (4) as follows:

δH ≤ n2 (n− 2)

2 (n− 1)
‖H‖2 + ‖P‖2 +

1

2

(
n2 − n− 2

)
(1.4)
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where ‖H‖2 is the squared mean curvature of submanifold N in CPm (4) .
Pursuing the development of this research program, B.-Y. Chen formulated a series

of fundamental questions in [6,7]. The first problem we study is the following:
Problem 1 How can we establish simple relationship between the main intrinsic

invariants and the main extrinsic invariants of the vertical spaces and horizontal space
of a Riemannian manifold admitting a Riemannian submersion?

It is known that there exist some Euclidean manifolds which admit non trivial sub-
mersion. In [9], B.-Y. Chen showed that under which condition a Riemannian submer-
sion is non trivial. In this paper, we investigate under which condition a Riemannian
submersion is non-trivial with the aid of some inequalities involving curvature invari-
ants of the base manifold and target manifold admitting a Riemannian submersion.

The second problem we study is the following:
Problem 2 Which conditions are necessary for a Riemannian manifold admits a

harmonic Riemannian submersion?
In [20], S. W. Wei showed that all fibers of the target space of a Riemannian sub-

mersion are minimal if and only if the submersion is harmonic. Using this important
result of S. W. Wei, we try to respond Problem 2 by establishing some inequalities
involving the curvature invariants of the base manifold and of the target manifold of
a Riemannian submersion.

The paper is organized as follows: Section 2 is concerned with preliminaries. In sec-
tion 3, we establish sharp inequalities on a Riemannian manifold which admit a Rie-
mannian submersions. By using these inequalities, we obtain necessary and sufficient
conditions for horizontal distribution H to be integrable and the fibres of Riemannian
submersions to be either totally geodesic or totally umbilical.

2 Preliminaries

Let (M, g) and (B, g′) be C∞-Riemannian manifolds of dimension m and n respec-
tively. A surjective C∞ map π : M → B is a C∞submersion if it has maximal rank at
any point of M. For any x ∈ B, π−1 (x) is closed r-dimensional (r = m− n) subman-
ifold of M . Putting Vp = kerπ∗p for any p ∈ M, we obtain an integrable distribution
V which corresponds to the foliation of M determined by the fibres of π, since each
Vp coincides with the tangent space of π−1 (x) at p, π (x) = p. Each Vp is called the
vertical space at p, V is the vertical distribution, the sections of V are called vertical
vector fields and determine a Lie subalgebra χv (M) of χ (M). Let H be the com-
plementary distribution of V determined by the Riemannian metric g. Then one has
following orthogonal decomposition

Tp (M) = Vp ⊕Hp. (2.1)

Here, Hp is called the horizontal space at p. Furthermore, π is called a Riemannian
submersion if π∗p preserves the length of the horizontal vectors at each point p of M
[11].

Let h and v are the projection morphisms of χ (M) on χh (M) and χv (M), respec-
tively. O’Neill’s tensors T and A are defined by, respectively,

AEF = h∇hEvF + v∇hEhF, (2.2)
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and
TEF = h∇vEvF + v∇vEhF, (2.3)

for any E,F ∈ χ (M). Here, ∇ is the Levi-Civita connection of g and both TE , AE
are skew-symmetric operators on χ (M) [17].

It is known that the tensor fields T and A satisfy that

TUW = TWU, (2.4)

AXY = −AYX, (2.5)

for any U,W ∈ χv (M) and X,Y ∈ χh (M) . From (2.2) and (2.3) equalities, one has

∇VW = TVW + ∇̂VW, (2.6)

∇VX = h∇VX + TVX, (2.7)

∇XV = AXV + v∇XV, (2.8)

∇XY = h∇XY +AXY, (2.9)

for any V,W ∈ χv (M) and X,Y ∈ χh (M) [11].
We denote the Riemannian curvature tensors of (M, g) and (B, g′) by R and R′

,
respectively. R and R′

are given by, respectively,

π∗ (R∗ (X,Y, Z)) = R′
(π∗X,π∗Y, π∗Z)

for any X,Y, Z ∈ χh (M).
From the Gauss and Codazzi equations, it is also known that

R (U, V, F,W ) = R̂ (U, V, F,W )− g (TUW, TV F ) + g (TVW, TUF ) (2.10)

R (U, V,W,X) = −g ((∇V T ) (U,W ) , X) + g ((∇UT ) (V,W ) , X) (2.11)

for any U, V,W,F ∈ χv (M) and X ∈ χh (M) .
Moreover, there are some relations involving curvature tensor R as follows:

R (X,Y, Z,H) = R∗(X,Y, Z,H) + 2g (AXY,AZH)
−g (AY Z,AXH) + g (AXZ,AYH) ,

(2.12)

and

R (X,V, Y,W ) = −g ((∇XT ) (V,W ) , Y )− g ((∇VA) (X,Y ) ,W )
+g (TVX, TWY )− g (AXV,AYW ) ,

(2.13)

for any X,Y, Z,H ∈ χh (M) and V,W ∈ χv (M) [8].
Let α be a vertical 2-plane spanned by orthonormal vectors U and V . From (2.10),

one has the following equality between the sectional curvature K (α) and sectional

curvature K̂ (α) on the fibre through p:

K (α) = K̂ (α)− ‖TUV ‖2 + g (TUU, TV V ) . (2.14)
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Let {X,Y } be an orthonormal basis of the horizontal 2-plane α, K′
(α′) denotes the

sectional curvature in (B, g′) of the plane α′ spanned by {π∗X, π∗Y }. From (2.12) one
can obtain

K (α) = K′(α′) + 3 ‖AXY ‖2 . (2.15)

Finally if X ∈ χh(M), V ∈ χv(M) are unit vectors spanning α, then from (2.13)
one can write

K (α) = −g ((∇XT ) (V, V ) , X) + ‖TVX‖2 − ‖AXV ‖2 . (2.16)

Here {Xi, Uj} (1 ≤ i ≤ n, 1 ≤ j ≤ r) is called π-adapted a local orthonormal frame
on M [18].

From the above equations, scalar curvature τ (p) at p ∈M is given by

τ (p) =
∑

1≤i<j≤r
K (Ui, Uj) +

∑
1≤i<j≤n

K (Xi, Xj) +
r∑
j=1

n∑
i=1

K (Uj , Xi) . (2.17)

The mean curvature vector field H(p) on any fibre is given by

N = rH, (2.18)

where

N =
r∑
j=1

TUj
Uj . (2.19)

Let {U1, U2, ..., Ur} be an orthonormal basis of χv(M). It is known that

g(∇EN , X) =
r∑
j=1

g((∇ET )(Uj , Uj), X), (2.20)

for any E ∈ χ(M) and X ∈ χh(M) [11].
The horizontal divergence of any vector field X on χh(M) is shown by δ̌(X) and

defined by

δ̌(X) =
n∑
i=1

g(∇Xi
X,Xi), (2.21)

where {X1, X2, ..., Xn} is an orthonormal basis of χh(M). Thus, we put

δ̌(N ) =
n∑
i

r∑
i=1

g((∇Xi
T )(Uj , Uj), Xi. (2.22)

For details, we refer to [2].
It is said to be π has totally geodesic fibres if T vanishes identically and π has totally

umbilical fibres if
TUV = g (U, V )H, (2.23)

where U, V ∈ χv (M) and H is mean curvature vector field of fibres.
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A map π is called p − harmonic, p ≥ 1, if it is a weak solution to the following
Euler-Lagrange equation for Ep :

rp (π) := div
(
|dπ|p−2 dπ

)
:=

n∑
i=1

(∇πei |dπ|
p−2 dπ) (ei)

=
n∑
i=1

(
∇πei |dπ|

p−2 dπ (ei)− |dπ|p−2 dπ
(
∇Mei ei

))
= 0,

where rp (π) is the p−tension field of π, ∇π is the pullback connection of the Levi-
Civita connection ∇B on B, on the induced bundle π−1(TB). That is, a C1 map
π : M → B satisfies

n∑
i=1

∫
M g′(|dπ|p−2 dπ (ei) ,∇πeiV )dv = 0,

for every smooth compactly supported vector field V along the map π. For p = 2, π
is called harmonic morphism. For more details, we refer to [15] and [20].

3 Some Inequalities for Riemannian Submersions

In this section, we study the scalar curvature of a Riemannian manifold admitting
a Riemannian submersion and we establish some inequalities involving the scalar
curvatures of (Mm, g) and (Bn, g′).

We begin this section with the following lemma:

Lemma 3.1 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rieman-
nian submersion π : M → B. Then we have

2τ (p) = 2τ̂ (p) + 2τ∗ (p)− ‖TV×V‖2 + r2 ‖H‖2 + 3 ‖AH×H‖2
−δ̌(N ) + ‖TV×H‖2 − ‖AH×V‖2 ,

(3.1)

where

τ̂ (p) =
∑

1≤i<j≤r
K̂ (Ui, Uj)

is the scalar curvature of the vertical space of M and

τ∗ (p) =
∑

1≤i<j≤n
K∗ (Xi, Xj)

is the scalar curvature of the horizontal space of M .

Proof. If we put (2.10), (2.12) and (2.13) equalities in

τ (p) = 1
2

r∑
i,j=1

R (Ui, Uj , Uj , Ui) + 1
2

n∑
i,j=1

R (Xi, Xj , Xj , Xi)

+ 1
2

n∑
i=1

r∑
j=1

R (Xi, Uj , Uj , Xi) ,
(3.2)
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we have

2τ (p) =
r∑

i,j=1

R̂ (Ui, Uj , Uj , Ui)−
r∑

i,j=1

n∑
s=1

(
T sij
)2

+
r∑

i,j=1

n∑
s=1
T siiT sjj

+
n∑

i,j=1

R∗ (Xi, Xj , Xj , Xi) + 3
n∑

i,j=1

r∑
s=1

(
Asij
)2

−
r∑
j=1

n∑
i=1

g ((∇Xi
T ) (Uj , Uj) , Xi) +

r∑
j=1

n∑
i=1

r∑
s=1

(
T sji
)2

−
r∑
j=1

n∑
i=1

r∑
s=1

(
Asij
)2
.

(3.3)

From (2.22), we get (3.1). ut

Using Lemma 3.1, we get the following theorems and corollary immediately:

Theorem 3.2 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rie-
mannian submersion π : M → B. Then we have

2τ (p) ≥ 2τ̂ (p) + 2τ∗ (p)− ‖TV×V‖2 + r2 ‖H‖2
− δ̌(N )− ‖AH×V‖2 + ‖TV×H‖2

(3.4)

and
2τ (p) ≤ 2τ̂ (p) + 2τ∗ (p)− ‖TV×V‖2 + r2 ‖H‖2
− δ̌(N ) + ‖TV×H‖2 + 3 ‖AH×H‖2

(3.5)

Equality cases of (3.4) and (3.5) hold for all p ∈ M if and only if horizontal distri-
bution H is integrable.

From Theorem 3.2, we have the following corollary immediately:

Corollary 3.3 Let π : (Mm, g) → (Bn, g′) be a Riemannian submersion with totally
geodesic fibres. Then, we have

2τ (p) ≥ 2τ̂ (p) + 2τ∗ (p)− ‖AH×V‖2 . (3.6)

and
2τ (p) ≤ 2τ̂ (p) + 2τ∗ (p) + 3 ‖AH×H‖2 . (3.7)

Equality cases of (3.6) and (3.7) hold for all p ∈ M if and only if horizontal distri-
bution H is integrable.

Theorem 3.4 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rie-
mannian submersion π : M → B. Then we have

2τ (p) ≤ 2τ̂ (p) + 2τ∗ (p) + r2 ‖H‖2 + 3 ‖AH×H‖2
−δ̌(N )− ‖AH×V‖2 + ‖TV×H‖2 .

(3.8)

and
2τ (p) ≥ 2τ̂ (p) + 2τ∗ (p) + r2 ‖H‖2 + 3 ‖AH×H‖2

−δ̌(N )− ‖AH×V‖2 − ‖TV×V‖2 .
(3.9)

Equality cases of (3.8) and (3.9) hold for all p ∈ M if and only if the fibre through
p of π is a totally geodesic submanifold of M.
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From Theorem 3.4, we have the following corollary immediately:

Corollary 3.5 Let π : (Mm, g)→ (Bn, g′) be a Riemannian submersion and horizon-
tal distribution H is integrable. Then, we have

2τ (p) ≤ 2τ̂ (p) + 2τ∗ (p) + ‖TV×H‖2 + r2‖H‖2 − δ̌(N ). (3.10)

and

2τ (p) ≥ 2τ̂ (p) + 2τ∗ (p)− ‖TV×V‖2 + r2‖H‖2 − δ̌(N ). (3.11)

Equality cases of (3.10) and (3.11) hold for all p ∈M if and only if the fibre through
p of π is a totally geodesic submanifold of M.

Using by the arithmetic mean-geometric mean (AM-GM) inequality, we get the
following two theorems:

Theorem 3.6 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rie-
mannian submersion π : M → B. Then we have

2τ (p) ≤ 2τ̂ (p) + 2τ∗ (p)− 2 ‖TV×V‖ ‖AH×V‖
+r2 ‖H‖2 + 3 ‖AH×H‖2 − δ̌(N ) + ‖TV×H‖2 .

(3.12)

Equality case of (3.12) holds for all p ∈M if and only if ‖AH×V‖ = ‖TV×V‖ or both
of dimensions of the fibre of π and horizontal distribution are the same.

Theorem 3.7 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rie-
mannian submersion π : M → B. Then we have

2τ (p) ≥ 2τ̂ (p) + 2τ∗ (p) + 2
√

3 ‖AH×H‖ ‖TV×H‖
−‖TV×V‖2 + r2 ‖H‖2 − δ̌(N )− ‖AH×V‖2 .

(3.13)

Equality case of (3.13) holds for all p ∈M if and only if ‖AH×H‖ = ‖TV×V‖ or both
of dimensions of the fibre of π and horizontal distribution are the same.

Using by Cauchy-Schwarz inequality (see also Lemma 3.2 in [19]), we have the
following theorem:

Theorem 3.8 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rie-
mannian submersion π : M → B. Then we have

2τ (p) ≤ 2τ̂ (p) + 2τ∗ (p)− r (1− r) ‖H‖2 + 3 ‖AH×H‖2
−δ̌(N )− ‖AH×V‖2 + ‖TV×H‖2 .

(3.14)

Equality case of (3.14) holds for all p ∈ M if and only if we have the following
statements:
i) π is a Riemannian submersion that has a totally umbilical fibres.
ii) Tij = 0, for i 6= j ∈ {1, 2, . . . , r}.
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Proof. From (3.1) we have

2τ (p) = 2τ̂ (p) + 2τ∗ (p)−
n∑
s=1

r∑
i=1

(T sii )
2 −

n∑
s=1

r∑
i 6=j

(
T sij
)2

+
n∑
s=1

r∑
i,j=1

T siiT sjj + 3 ‖AH×H‖2 − δ̌(N )

+ ‖TV×H‖2 − ‖AH×V‖2 .

(3.15)

From Cauchy-Schwarz inequality, we get

2τ (p) ≤ 2τ̂ (p) + 2τ∗ (p)− 1
r

n∑
s=1

(
r∑
i=1

T rii
)2

−
n∑
s=1

r∑
i 6=j

(
T sij
)2

+ r2 ‖H‖2 + 3 ‖AH×H‖2 − δ̌(N )
+ ‖TV×H‖2 − ‖AH×V‖2 ,

(3.16)

which is equivalent to (3.14). Equality case of (29) holds for all p ∈M if and only if

T11 = T22 = ... = Trr and
n∑
s=1

r∑
i 6=j

(
T sij
)2

= 0, (3.17)

which completes proof of the theorem ut

Using by similar proof way of Theorem 3.8, we have the following theorem:

Theorem 3.9 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rie-
mannian submersion π : M → B. Then we have

2τ (p) ≥ 2τ̂ (p) + 2τ∗ (p)− ‖TV×V ‖2 + r2 ‖H‖2
+ 3
ntrace (AH×H)2 − δ̌(N ) + ‖TV×H‖2 − ‖AH×V‖2 .

(3.18)

Equality case of (3.18) holds for all p ∈ M if and only if A11 = A22 = . . . = Ann
and Aij = 0, for i 6= j ∈ {1, 2, ..., n}.

Corollary 3.10 Let π : (Mm, g)→ (Bn, g′) be a Riemannian submersion with totally
geodesic fibres. Then, we have

2τ (p) ≥ 2τ̂ (p) + 2τ∗ (p) + 3
ntrace (AH×H)2 . (3.19)

Equality case of (3.19) holds for all p ∈M if and only if A11 = A22 = . . . = Ann and
Aij = 0, for i 6= j ∈ {1, 2, ..., n} .

Theorem 3.11 [9] Let π : M → B be a Riemannian submersion. Then π is p −
harmonic, for every p > 1, if and only if all fibers π−1 (x) , x ∈ B are minimal
submanifolds in M .

Using Theorem 3.11, we have the following theorem.

Theorem 3.12 Equality cases of inequalities (3.8) and (3.9), (3.10) and (3.11), (3.14)
are hold for all p ∈M if and only if Riemannian submersion π is harmonic.

Now, we shall need the following lemma [4]:
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Lemma 3.13 If n > k ≥ 2 and a1, . . . , an, a are real numbers such that

(
n∑
i=1

ai)
2 = (n− k + 1)(

n∑
i=1

(ai)
2 + a), (3.20)

then

2
∑

1≤i<j≤k
aiaj ≥ a,

with equality holding if and only if

a1 + a2 = ... = ak = ak+1 = · · · = an.

Theorem 3.14 Let (Mm, g) and (Bn, g′) be Riemannian manifolds admitting a Rie-
mannian submersion π : M → B and denote by P the plane spanned by U1 and U2

the vertical vectors. Then, one has:

τ (p)−KP ≤ τ̂ (p) + τ∗ (p) + K̂P − r2(r−2)
2(r−1) ‖H‖

2 + 1
2 δ̌(N )

+1
2 ‖TV×H‖

2 − 1
2 ‖AH×V‖

2 + 3
2 ‖AH×H‖

2 .
(3.21)

Equality case of (3.21) holds for all p ∈M if and only if there exists an orthonormal
basis {U1, U2, ..., Ur} of χv (M) and an orthonormal basis {X1, X2, ..., Xn} of χh (M)
such that shape operators SX1 , . . . , SXn

of the vertical space of M take the following
forms:

SX1 =


a 0 0 . . . 0
0 b 0 . . . 0
0 0 λ . . . 0
.
.
.

.

.

.

.

.

.

.

.

.
0 0 0 . . . λ

 , λ = a+ b

and

SXs
=


cs ds . . . 0
ds −cs . . . 0
.
.
.

.

.

.

.

.

.
0 0 . . . 0

 , 2 ≤ s ≤ n.

Proof. If we put

ω = 2τ̂ (p) + 2τ∗ (p)− 2τ (p) + r2(r−2)
r−1 ‖H‖2 + ‖TV×H‖2

−‖AH×V‖2 + 3 ‖AH×H‖2 − δ̌(N ).
(3.22)

in (3.1) we have

ω = ‖TV×V‖2 − r2

r−1 ‖H‖
2 . (3.23)
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Moreover, we choose the normal vector X1 to be in the direction of the mean
curvature vector at p.and from (3.23) we can write(

r∑
i=1

T 1
iiX1

)2

= (r − 1)(−w +
r∑
i=1

(T 1
ii )

2 +
r∑

i 6=j=1

(T 1
ij )

2

+
n∑
s=2

r∑
i,j=1

(T sij)2).

(3.24)

Applying Lemma 3.13, we get

T 1
11T 1

22 ≥ −ω
2 + 1

2

r∑
i 6=j=1

(
T 1
ij

)2
+ 1

2

n∑
s=2

r∑
i,j=1

(
T sij
)2
. (3.25)

Let we choose a 2-plane section π spanned by orthonormal vectors U1 and U2 on
χv (M). From (2.10) and (3.25), we obtain the followings:

K (α) ≤ K̂ (α) +
n∑
s=1

(T s12)2 − ω
2 + 1

2

r∑
i 6=j=1

(T 1
ij )

2

+1
2

n∑
s=2

r∑
i,j=1

(T sij)2 +
n∑
s=2
T s11T s22

≤ K̂ (α)− ω
2 + 1

2

n∑
s=2

(T s11 + T s22)2

+1
2

n∑
s=2

∑
i,j>2

(T sij)2 +
n∑
s=1

r∑
j>2

(
(
T s1j
)2

+
(
T s2j
)2

)

≤ K̂ (α)− ω
2

(3.26)

which is equivalent to (3.21). Equality case of (3.21) holds for all p ∈M if and only if

n∑
s=2

(T s11 + T s22)2 = 0,
n∑
s=1

r∑
j>1

((
T s1j
)2

+
(
T s2j
)2)

= 0,
n∑
s=2

r∑
i,j>2

(
T sij
)2

= 0

and

T 1
11 + T 1

22 = T 1
33 = ... = T 1

rr

which follows that shape operators SX1 , . . . , SXn
of the vertical space of M at p take

the desired form. ut

Example 3.1 Let π : S2n+1 → CPn(4) be a Riemannian submersion, where S2n+1 has
constant curvature 1 and complex projective n-space CPn(4) of constant holomorphic
sectional curvature 4. It’s clear that complex Hopf fibration π satisfy the inequality
(3.21).
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Ann. Soc. Polon. Math., 5 (1926), 38-43.

15. Loubeau, E. – On p-harmonic morphisms, Differential Geom. Appl., 12 (2000), no. 3, 219–229.
16. Nash, J.N. – The imbedding problem for Riemannian manifolds, Annals of Math. (2), 63 (1956),

20–63.
17. O’Neill, B. – The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–

469.
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