# Vibrational Spectrum and Normal Coordinate Analysis of *p*-Toluidino-*p*-chlorophenylglyoxime

HAKAN ARSLAN\* and TALAT ÖZPOZAN†

Department of Chemistry, Faculty of Arts and Science Mersin University, Mersin 33343, Turkey Tel: (90)(532)7073122; Fax: (90)(324)3415759 E-mail: arslanh@mersin.edu.tr

A complete vibrational assignment of the solid-state IR spectrum of p-toluidino-p-chlorophenylglyoxime was performed on the basis of normal coordinate analysis of a single molecule, assuming  $C_s$  point group symmetry. The calculated normal frequencies were in good agreement with the experimental one.

Key Words: Vic-dioxime, FTIR spectra, Valence force fields calculation, Normal coordinate analysis.

### INTRODUCTION

Vic-dioximes have an important place among coordination compounds. The early studies on oxime complexes started in 1905 as mentioned in review of Chakravorty<sup>1</sup> where the reactions of dimethylglyoximes with Ni(II) ion were examined. Later in 1907, Tschugaff<sup>2</sup> isolated dimethylglyoxime complexes of Co(III) which played an important role as a model compound in the elucidation of some biological and biochemical mechanisms. Several studies were concentrated on vic-dioximes complexed with Co atom in the following years<sup>3, 4</sup>. They were used as model compounds to explain the structure of vitamin B12 and coenzyme B12 since these big molecules play important roles in the biological systems.

At present, new interesting properties of *vic*-dioximes are under examination. In some studies, its Pt complexes were used as anti-tumor agents in chemotherapy of some certain types of cancer. Some were used in the production of semi-conductors. In some other studies, liquid crystal properties of some *vic*-dioximes were being examined<sup>5</sup>. They were also used as column packing materials in chromatographic separation of nucleotides and nucleosides after bonding to natural resins as functional groups<sup>6</sup>.

Vibrational spectra of dioximes were not examined before but the some metal complexes of the glyoxime molecule were studied by using only its IR spectrum<sup>7</sup>. Since these classes of compounds have a tendency of fluorescing, it is difficult to take their Raman spectra and use it in normal coordinate analysis (NCA).

Based upon the literature search, a complete vibrational analysis of this type of vic-dioximes is not established so far. Having such important properties of

<sup>†</sup>Department of Chemistry, Faculty of Arts and Science, Erciyes University, Kayseri, Turkey.

1816 Arslan et al. Asian J. Chem.

vic-dioxime derivatives, p-toluidino-p-chlorophenylglyoxime (pTpCPG), a complete vibrational analysis using FTIR measurement data along with the result of normal coordinate analysis are presented in this paper.

#### EXPERIMENTAL

p-Toluidino-p-chlorophenylglyoxime (pTpCPG) was synthesized as previously described in the literature<sup>8</sup>. Spectroscopically pure chemicals were obtained from Aldrich Chemicals, U.S.A. and used as such for recording spectra. The solid-state infrared spectrum of the pTpCPG studied were recorded using in the form of KBr pellet by BOMEN MB102 FTIR instrument in 4000–200 cm<sup>-1</sup> frequency ranges; the resolution was 1 cm<sup>-1</sup>. The Raman spectrum of the compound in a spinning cell was excited using the 488.0 nm line of Ar<sup>+</sup> gas laser and recorded on a Jobin-Yvon U 1000 spectrometer, which was calibrated against the laser plasma emission lines.

## Normal coordinate analysis

Fig. 1 shows the structure of a p-toluidino-p-chlorophenylglyoxime molecule with the labeling of atoms. No structural studies are available for pTpCPG in the literature. Therefore, the structural parameters have been taken from related small molecules  $^{7.9-15}$ . The molecular parameters used for the calculations are reported in Table-1. Owing to its structure, the molecule pTpCPG belongs to the  $C_s$  symmetry point group. The 99 normal modes of pTpCPG are distributed between the two species (A' and A'') of the  $C_s$  point group as: 66A' + 33A''. All of the species are both IR and Raman active.

$$H_{20}$$
 $C_{19}$ 
 $C_{10}$ 
 $C_{9}$ 
 $C_{10}$ 
 $C_{8}$ 
 $C_{8}$ 
 $C_{8}$ 
 $C_{18}$ 
 $C_{11}$ 
 $C_{11}$ 
 $C_{8}$ 
 $C_{18}$ 
 $C_{11}$ 
 $C_{11}$ 

Fig. 1. Structure of p-toluidino-p-chlorophenylglyoxime

TABLE-1 MOLECULAR PARAMETERS USED FOR THE CALCULATIONS

| Bond Lengths (Å)                                |        |                                                   | **     |
|-------------------------------------------------|--------|---------------------------------------------------|--------|
| $C_1 - C_2$                                     | 1.435  | N <sub>3</sub> —H <sub>14</sub>                   | 1.008  |
| $C_2-N_3$                                       | 1.472  | O <sub>13</sub> —H <sub>15</sub>                  | 0.956  |
| C <sub>1</sub> —N <sub>4</sub>                  | 1.290  | C <sub>7</sub> —H <sub>17</sub>                   | 1.084  |
| $C_1 - C_6$                                     | 1.510  | C9—Cl <sub>19</sub>                               | 1.700  |
| C <sub>6</sub> —C <sub>7</sub>                  | 1.397  | N <sub>3</sub> —C <sub>22</sub>                   | 1.426  |
| N <sub>4</sub> —O <sub>12</sub>                 | 1.346  | $C_{25}$ — $C_{32}$                               | 1.510  |
| Bond Angles (°)                                 |        |                                                   |        |
| $C_2-C_1-N_4$                                   | 125.42 | C <sub>6</sub> —C <sub>7</sub> —H <sub>17</sub>   | 120.00 |
| $C_2-C_1-C_6$                                   | 117.79 | C <sub>8</sub> —C <sub>9</sub> —Cl <sub>19</sub>  | 120.00 |
| C <sub>2</sub> —N <sub>3</sub> —H <sub>14</sub> | 120.55 | N <sub>4</sub> —O <sub>12</sub> —H <sub>16</sub>  | 97.95  |
| $C_2$ — $N_3$ — $C_{22}$                        | 118.90 | N <sub>3</sub> —C <sub>22</sub> —C <sub>27</sub>  | 120.00 |
| C <sub>1</sub> -N <sub>4</sub> -O <sub>12</sub> | 121.45 | $C_{25}$ — $C_{32}$ — $H_{33}$                    | 109.47 |
| C <sub>1</sub> —C <sub>6</sub> —C <sub>7</sub>  | 120.00 | H <sub>34</sub> —C <sub>32</sub> —H <sub>35</sub> | 109.47 |

In order to ascertain the amount of mixing among the internal coordinates and to obtain a more accurate description of the fundamental vibrations of pTpCPG, a normal coordinate calculation has been undertaken. The calculations carried out using Simple General Valence Force Field (SGVFF) in Wilsons GF matrix method with the computer program originally written by Schachtschneider<sup>16</sup> and developed (for OS/2 -IBM) by Fischer et al. 17 under the name of SPSIM (SPectrum SIMultation).

The initial set of valence force constant and the corresponding off diagonal constant were transferred from related systems 11-13, 18-28. A zero order calculation with the transferred force constant was performed except for some deformational and longitudinal modes. The results indicated the reasonable agreement between the calculated and the observed frequencies. The initial set of force constant was refined by the method of least square technique by keeping some interaction force constants fixed throughout the refinement process. The final values of force constants and their description are given in Table-2. The calculated and observed wavenumber values are compared in Table-3, which also give the significant values of the potential energy distribution (PED) for each mode of vibration.

#### **RESULTS AND DISCUSSION**

The vibrational analysis of the pTpCPG under examination was performed in the foregoing study. FTIR part of the vibrational spectra of the compound were the only spectral source because of the difficulty of taking dispersive Raman spectra of the compound excited with a visible Laser source. A broad photoluminescence band along the IR wavelength region from 200 to 3500 cm<sup>-1</sup> prevented, obtaining a reasonable Raman signals. This was not a serious problem in the compound because of both A' and A" modes are active in both Raman and infrared in C<sub>s</sub> point group symmetry. The IR spectrum of the p-toluidino-pchlorophenylglyoxime molecule is given in Fig. 2.

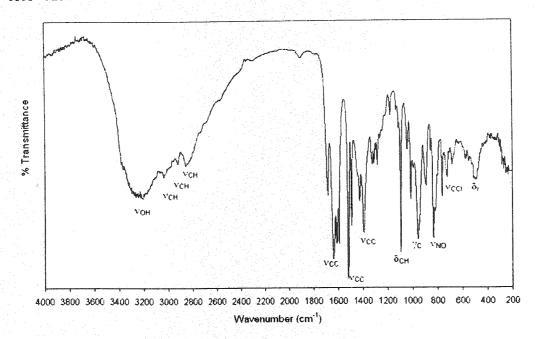



Fig. 2. Infrared spectrum of p-toluidino-p-chlorophenylglyoxime

TABLE-2
VALENCE FORCE CONSTANTS OF p-TOLUIDINO-pCHLOROPHENYLGLYOXIME†‡§

| No       Force constant       Internal coordinate         1 $K(C_{ox}-C_{ox})$ 5.240 $C_1-C_2$ 2 $K(C=N)$ 9.549* $C_1-N_4$ 3 $K(C_{ox}-C_x)$ 5.101 $C_1-C_6$ |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2 $K(C=N)$ 9.549* $C_1-N_4$<br>3 $K(C_{ox}-C_x)$ 5.101 $C_1-C_6$                                                                                             |                |
| 3 $K(C_{ox}-C_x)$ 5.101 $C_1-C_6$                                                                                                                            |                |
| 그리다 그 사이 바다에 가고 있다는 사람들이 되었다면 그를 가면서 되었다면 하는 사람들이 되었다.                                                                                                       |                |
| 그리고 있다면 그 아래에 가장 요즘 가장 하는 사람이 얼마나 가장 얼마를 들어 있는 것이 되었다.                                                                                                       |                |
| 4 $K(C_{ox}-N)$ 6.116 $C_2-N_3$                                                                                                                              |                |
| 5 K(N—H) 6.247* N <sub>3</sub> —H <sub>14</sub>                                                                                                              |                |
| 6 $K(N-C_1)$ 4.500 $N_3-C_{22}$                                                                                                                              |                |
| 7 K(N—O) 4.010 N <sub>4</sub> —O <sub>12</sub>                                                                                                               |                |
| 8 K(C—C) <sub>x, o</sub> 6.415 C <sub>6</sub> —C <sub>7</sub>                                                                                                |                |
| 9 $K(C-C)_{x, m}$ 6.727 $C_7-C_8$                                                                                                                            |                |
| 10 $K(C-H)_x$ 5.076* $C_7-H_{17}$                                                                                                                            |                |
| 11 $K(C-C)_{x,p}$ 6.760 $C_8-C_9$                                                                                                                            |                |
| 12 K(C—CI) 3.733 C <sub>9</sub> —Cl <sub>19</sub>                                                                                                            |                |
| 13 K(O—H) 6.103* O <sub>12</sub> —H <sub>16</sub>                                                                                                            |                |
| 14 $K(C-C)_1$ 6.415 $C_{22}-C_{23}$                                                                                                                          | par a state of |
| 15 $K(C-H)_t$ 4.999* $C_{23}-H_{28}$                                                                                                                         |                |
| 16 K(C—CH <sub>3</sub> ) 4.681 C <sub>25</sub> —C <sub>32</sub>                                                                                              |                |
| 17 K(C <sub>r</sub> —H) 4.588* C <sub>32</sub> —H <sub>33</sub>                                                                                              |                |
| 18 $H(C_{ox}-C_{ox}=N)$ 2.651 $C_2-C_1-N_4$                                                                                                                  |                |
| 19 $H(C_{ox}-C_{ox}-C_{x})$ 0.350 $C_{2}-C_{1}-C_{6}$                                                                                                        |                |
| 20 $H(N-C_{ox}-C_{x})$ 2.651 $N_{4}-C_{1}-C_{6}$                                                                                                             |                |

| No | Force constant              |         | Internal coordinate                               |
|----|-----------------------------|---------|---------------------------------------------------|
| 21 | $H(C_{ox}-C_{ox}-N)$        | 0.350   | C <sub>1</sub> —C <sub>2</sub> —N <sub>3</sub>    |
| 22 | $H(C_{ox}-C_{ox}=N)$        | 2.651   | $C_1$ — $C_2$ — $N_5$                             |
| 23 | $H(N-C_{ox}=N)$             | 1.654*  | $N_3$ — $C_2$ — $N_5$                             |
| 24 | $H(C_{ox}-N-H)$             | 0.901   | $C_2-N_3-H_{14}$                                  |
| 25 | $H(C_{ox}-N-C_t)$           | 1.177   | $C_2$ — $N_3$ — $C_{22}$                          |
| 26 | $H(H-N-C_t)$                | 0.901   | $H_{14}$ — $N_3$ — $C_{22}$                       |
| 27 | $H(C_{ox}-C-C)_x$           | 0.716   | $C_1$ — $C_6$ — $C_7$                             |
| 28 | $H(C-C-C)_x$                | 1.242   | C <sub>7</sub> —C <sub>6</sub> —C <sub>11</sub>   |
| 29 | $H(CCC)_{x,o}$              | 0.989   | C <sub>6</sub> —C <sub>7</sub> —C <sub>8</sub>    |
| 30 | $H(C-C-H)_x$                | 0.508   | C <sub>6</sub> —C <sub>7</sub> —H <sub>17</sub>   |
| 31 | $H(C-C-C)_{x, m}$           | 0.865   | $C_8$ — $C_9$ — $C_{10}$                          |
| 32 | H(C—C—CI)                   | 0.828   | C <sub>8</sub> —C <sub>9</sub> —Cl <sub>19</sub>  |
| 33 | $H(C_{ox}=N-O)$             | 1.180   | $C_1$ — $N_4$ — $O_{12}$                          |
| 34 | H(N—O—H)                    | 0.682*  | N <sub>4</sub> —O <sub>12</sub> —H <sub>16</sub>  |
| 35 | $H(N-C_1-C_1)$              | 0.760   | N <sub>3</sub> C <sub>22</sub> C <sub>23</sub>    |
| 36 | $H(C-C-C)_{t}$              | 1.248   | $C_{23}$ — $C_{22}$ — $C_{27}$                    |
| 37 | H(CC-C) <sub>t, o</sub>     | 1.028   | $C_{22}$ — $C_{23}$ — $C_{24}$                    |
| 38 | $H(C-C-H)_{i}$              | 0.515   | C <sub>22</sub> —C <sub>23</sub> —H <sub>28</sub> |
| 39 | H(C—C—CH <sub>3</sub> )     | 0.754   | $C_{24}$ — $C_{25}$ — $C_{32}$                    |
| 40 | $H(C-C_1-H_1)$              | 0.642   | C <sub>25</sub> —C <sub>32</sub> —H <sub>33</sub> |
| 41 | $H(H-C_t-H)$                | 0.535   | H <sub>33</sub> —C <sub>32</sub> —H <sub>34</sub> |
| 42 | $P(C_{ox1})$                | 0.432   | $C_1$                                             |
| 43 | $P(C_{ox2})$                | 0.602   | C <sub>2</sub>                                    |
| 44 | P(N)                        | 0.106   | $N_3$                                             |
| 45 | $P(C)_x$                    | 0.545   | C <sub>6</sub>                                    |
| 46 | $P(C)_{x, o}$               | 0.432   | C <sub>7</sub>                                    |
| 47 | $P(C)_{t}$                  | 0.653   | C <sub>22</sub>                                   |
| 48 | $P(C)_{t, o}$               | 0.432   | C <sub>23</sub>                                   |
| 49 | $P(C)_{t, p}$               | 0.502   | C <sub>25</sub>                                   |
| 50 | $T(C_{ox}-C_{ox})$          | 0.085   | C <sub>1</sub> —C <sub>2</sub>                    |
| 51 | $T(C_{ox}=N)$               | 0.491   | C <sub>1</sub> N <sub>4</sub>                     |
| 52 | $T(C_{ox}-C_x)$             | 0.695   | $C_1$ — $C_6$                                     |
| 53 | $T(C_{ox}-N)$               | 0.037 ⋅ | C <sub>2</sub> —N <sub>3</sub>                    |
| 54 | T(N—C <sub>d</sub> )        | 0.695   | N <sub>3</sub> —C <sub>22</sub>                   |
| 55 | T(N-O)                      | 0.062   | N <sub>4</sub> —O <sub>12</sub>                   |
| 56 | T(C—C) <sub>x</sub>         | 0.278   | C6C7                                              |
| 57 | $T(C-C)_t$                  | 0.272   | $C_{22}$ — $C_{23}$                               |
| 58 | T(C—CH <sub>3</sub> )       | 0.211   | C <sub>25</sub> —C <sub>32</sub>                  |
| 59 | $F(C_{ox}-C_{ox}/C_{ox}=N)$ | 0.003   | $C_1 - C_2 / C_1 - N_4$                           |

|     |                                                         |                | Santa de la constantina della constantina de la constantina della |
|-----|---------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No  | Force constant                                          |                | Internal coordinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 60  | $F(C_{ox}=N/C_{ox}-C_{x})$                              | 0.065          | $C_1 - N_4/C_1 - C_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 61  | $F(C_{ox}=N/C_{ox}=N-O)$                                | 0.055          | C <sub>1</sub> —N <sub>4</sub> /C <sub>1</sub> —N <sub>4</sub> —O <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 62  | $F(C_{ox}-N/N-C_t)$                                     | -0.175         | $C_2$ — $N_3/N_3$ — $C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 63  | $F(C_{ox}-N/C_{ox}-N-C_t)$                              | 1.602          | $C_2$ — $N_3$ / $C_2$ — $N_3$ — $C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 64  | $F(C_x-C_x/C_x-C_x)$                                    | 1.276*         | $C_6$ — $C_7$ / $C_6$ — $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 65  | $F(C_x-C_x/C_{ox}-C_x-C_x)$                             | -0.066*        | $C_6-C_7/C_1-C_6-C_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 66  | $F(C_x-C_x/C_{ox}-C_x-C_x)$                             | -0.086         | $C_6-C_7/C_1-C_6-C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 67  | $F(C_x-C_x/C_x-C_x-C_x)$                                | -0.609*        | C <sub>6</sub> —C <sub>7</sub> /C <sub>7</sub> —C <sub>6</sub> —C <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 68  | $F(C_x-C_x/C_x-C_x-H)$                                  | 0.101*         | C <sub>8</sub> —C <sub>9</sub> /C <sub>9</sub> —C <sub>8</sub> —H <sub>18</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 69  | $F(C_x-C_x/C-C-Cl)$                                     | 0.197          | C <sub>8</sub> —C <sub>9</sub> /C <sub>8</sub> —C <sub>9</sub> —Cl <sub>19</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 70  | $F(C_x-C_x/C-CI)$                                       | 0.410          | C <sub>8</sub> —C <sub>9</sub> /C <sub>9</sub> —Cl <sub>19</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 71  | F(C—C/C—C—CI)                                           | 0.654          | C9-Cl <sub>19</sub> /C <sub>8</sub> C9Cl <sub>19</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 72  | F(C—CH <sub>3</sub> /C—C—CH <sub>3</sub> )              | 0.175*         | $C_{25}$ — $C_{32}$ / $C_{24}$ — $C_{25}$ — $C_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 73  | F(C—CH <sub>3</sub> /C—C <sub>1</sub> —H <sub>1</sub> ) | 0.266*         | C <sub>25</sub> —C <sub>32</sub> /C <sub>25</sub> —C <sub>32</sub> —H <sub>33</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 74  | $F(C_{ox}/C_x)$                                         | 0.083          | C <sub>1</sub> /C <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75  | $F(C_x/C_x)$                                            | -0.065         | C <sub>7</sub> /C <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76  | $F(C_x/C_x-C_x)$                                        | -0.082*        | C <sub>7</sub> /C <sub>6</sub> —C <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 77  | $F(C_x/C_t-C_t)$                                        | -0.087         | $C_{25}/C_{24}$ — $C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 78  | $F(C_x-C_x/C_x-C_x)$                                    | -0.036         | C <sub>6</sub> C <sub>7</sub> /C <sub>7</sub> C <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 79  | $F(C_x-C_x/C_x-C_x)$                                    | 0.890*         | C9-C10/C6-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 80  | $F(C_x-C_x/C_x-C_x)$                                    | 0.279          | C <sub>6</sub> —C <sub>7</sub> /C <sub>9</sub> —C <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 81  | $F(C_t-C_t-C_t/C_t-C_t-CH_3)$                           | -0.064         | $C_{23}$ — $C_{24}$ — $C_{25}$ / $C_{24}$ — $C_{25}$ — $C_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 82  | $F(C_t/C_t)$                                            | -0.069         | C <sub>25</sub> /C <sub>26</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 83  | $F(C_{r}-H_{t}/C_{r}-H_{t})$                            | 0.073          | C <sub>32</sub> —H <sub>33</sub> /C <sub>32</sub> —H <sub>34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84  | $F(C_{ox}-N-H/H-N-C_l)$                                 | 0.167*         | $C_2-N_3-H_{14}/H_{14}-N_3-C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 85  | $F(C_{ox}-N-H/C_{ox}-N-C_t)$                            | -0.574*        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 86  | $F(C_{ox}-C_{ox}/C_{ox}-N)$                             | 0.432*         | $C_1$ — $C_2$ / $C_2$ — $N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 87  | $F(C_{ox}-C_{ox}/C_{ox}-C_{x})$                         | -0.051*        | $C_1 - C_2/C_1 - C_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 88  | $F(C_1-C_1/C_1-C_1)$                                    | -0.122*        | C <sub>24</sub> —C <sub>25</sub> /C <sub>25</sub> —C <sub>26</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The | orce constants are given by V (atmosthin                | a) II (in also |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>†</sup>The force constants are given by K (strecthing), H (in-plane bending), P (out-of-plane bending), T (torsion), F (interaction).

The frequencies observed in the IR spectra along with their relative intensities, the corresponding calculated frequencies together with the respective potential; energy distribution (PEDs) and mode assignments are collected in Table-3. Here, the normal mode description following each fundamental in the last column is due to Wilson<sup>29</sup>. As seen from Table-3, the agreement between experimental and calculated frequencies for pTpCPG is good. The calculated frequencies do not

<sup>‡</sup>Bond strechting and bond-bond interaction constants are in mdyn/Å, angle bending force constants are in mdyn Å/rad², and bond-angle interaction constants are in mdyn/rad.

<sup>§</sup> x: chlorobenzene group, t: methylbenzene group, ox: oxime group, o: ortho, m: meta, p: para \* Included in the fit.

OBSERVED AND CALCULATED PLANAR AND NON-PLANAR FUNDAMENTALS (cm<sup>-1</sup>) OF pTpCPG\*

|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | 1                                                       |
|-------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | - 1                                                     |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | - 1                                                     |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | l                                                       |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | ŀ                                                       |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | .                                                       |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | 1                                                       |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | Œ                                                   | Ŧ                                                   |                                                                 | Ŧ                                                                       | ĺ                                                       |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | Ļ                                                   | Ĺ                                                   | المو                                                            | Ż                                                                       | (X)                                                     |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | × (0                                                | K<br>O                                              | 2                                                               | ,<br>O,                                                                 | 71                                                      |
|                                           | 1                                 |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | -                                                   | ~                                                   | 2                                                               | $\cup$                                                                  | OI                                                      |
|                                           | 1                                 |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | 66                                                  | 8                                                   | ~                                                               | $\widetilde{\Xi}$                                                       |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | 4)][96                                              | 1)1199                                              | 76][(                                                           | 20 H(                                                                   | 16 K(                                                   |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | (CH)][99                                            | (CH)][99                                            | CH)][97                                                         | ) + 20 H(                                                               | + 16 K(                                                 |
|                                           | [(                                | H)]                                 | H)]                                 |                                                                       | (x)                                              | ) <sub>x</sub> ]                                 | f) <sub>x</sub> ]                                 | 7                                                | Ρ(                                               | ).J                                              | P(                                  | c [v(CH)][99                                        | c [v(CH)][99                                        | [v(CH)][97                                                      | -C <sub>2</sub> ) + 20 H(                                               | =N) + 16 K(                                             |
| (9                                        | -H)]                              | F                                   | Ē                                   |                                                                       | -H),,]                                           | —H),,]                                           | -H),J                                             | -H).1                                            | FÁ-                                              | -H)2]                                            | -H)(H-                              | etric [v(CH)][99                                    | etric [v(CH)][99                                    | ric [v(CH)][97                                                  | N—C,) + 20 H(                                                           | C=N) + 16 K(                                            |
| ), %)                                     | [(H—N)                            | K(0-H)]                             | K(0-H)]                             | -H),J                                                                 | (C—H) <sub>x</sub> ]                             | (C—H) <sub>x</sub> ]                             | ((C—H) <sub>x</sub> ]                             | (C—H) <sub>[]</sub>                              | (C—H) <sub>[</sub> ]                             | (C—H) <sub>[</sub> ]                             | (C—H)(J                             | nmetric [v(CH)][99                                  | nmetric [v(CH)][99                                  | metric [v(CH)][97                                               | 1-N-C <sub>2</sub> ) + 20 H(                                            | K(C=N) + 16 K(                                          |
| PED, %)                                   | 9K(N—H)]                          | ∞ K(0—H)]                           | 00 K(0—H)]                          | ζ(c—H) <sub>x</sub> ]                                                 | 9 K(C—H) <sub>x</sub> ]                          | 9 K(C—H) <sub>x</sub> ]                          | 9 K(C—H) <sub>x</sub> ]                           | 8 K(C—H),]                                       | 9 K(C—H),]                                       | 9 K(C—H) <sub>[</sub> ]                          | 9 K(C—H),]                          | symmetric [v(CH)][99                                | symmetric [v(CH)][99                                | symmetric (v(CH))[97                                            | H(H—N—C <sub>0</sub> ) + 20 H(                                          | [53 K(C=N) + 16 K(                                      |
| ts (PED, %)                               | )][99K(N—H)]                      | )][100 K(0—H)]                      | )][100 K(0—H)]                      | 98 K <sub>(C—H)x</sub> ]                                              | )[[99 K(C—H) <sub>x</sub> ]                      | )[[99 K(C—H) <sub>x</sub> ]                      | )] [99 K(C—H) <sub>x</sub> ]                      | )[98 K(C—H),]                                    | J[99 K(C—H),J                                    | )[99 K(C—H)(]                                    | ][99 K(C—H)[]                       | <ol> <li>asymmetric [v(CH)][99</li> </ol>           | <ol> <li>asymmetric [v(CH)][99</li> </ol>           | <ol> <li>symmetric [v(CH)][97</li> </ol>                        | 21 H(H—N—C <sub>2</sub> ) + 20 H(                                       | N)][53 K(C=N) + 16 K(                                   |
| nents (PED, %)                            | NH)][99K(N—H)]                    | OH)][100 K(0—H)]                    | OH)][100 K(O—H)]                    | H][98 K <sub>(C—H)x</sub> ]                                           | CH)][99 K(C—H)x]                                 | CH)][99 K(C—H)x]                                 | CH)] [99 K(C—H) <sub>x</sub> ]                    | CH)][98 K(C—H),]                                 | CH)][99 K(C—H)[]                                 | CH)][99 K(C—H)[]                                 | CH)][99 K(C—H)[]                    | thyl), asymmetric [v(CH)][99                        | thyl), asymmetric [v(CH)][99                        | thyl), symmetric [v(CH)][97                                     | H)][21 H(H—N—C) + 20 H(                                                 | C=N][53 K( $C=N$ ) + 16 K(                              |
| gnments (PED, %)                          | [v(NH)][99K(N—H)]                 | [v(OH)][100 K(O—H)]                 | [v(OH)][100 K(O—H)]                 | [VCH][98 K(C—H) <sub>x</sub> ]                                        | [v(CH)][99 K(C—H) <sub>x</sub> ]                 | $[v(CH)][99 K(C-H)_x]$                           | [v(CH)] [99 K(C—H) <sub>x</sub> ]                 | [v(CH)][98 K(C—H),]                              | [v(CH)][99 K(C—H) <sub>1</sub> ]                 | [v(CH))[99 K(C—H),]                              | [v(CH)][99 K(C—H),]                 | (methyl), asymmetric [v(CH)][99                     | (methyl), asymmetric [v(CH)][99                     | (methyl), symmetric [v(CH)][97                                  | (NH)][21 H(H—N—C <sub>1</sub> ) + 20 H(                                 | [v(C=N)][53 K(C=N) + 16 K(C=N)]                         |
| Assignments (PED, %)                      | tch [v(NH)][99K(N—H)]             | tch [v(OH)][100 K(O—H)]             | tch [v(OH)][100 K(O—H)]             | tch [vcH][98 K(c—H) <sub>x</sub> ]                                    | tch [v(CH)][99 K(C—H) <sub>x</sub> ]             | ch [v(CH)][99 K(C—H)x]                           | cch [v(CH)] [99 K(C—H)x]                          | cch [v(CH)][98 K(C—H) <sub>[</sub> ]             | tch [v(CH)][99 K(C—H)t]                          | ch [v(CH)][99 K(C—H)t]                           | ch [v(CH)][99 K(C—H) <sub>L</sub> ] | ch (methyl), asymmetric [v(CH)][99                  | ich (methyl), asymmetric [v(CH)][99                 | Ich (methyl), symmetric [v(CH)][97                              | d [v(NH)][21 H(H—N—C <sub>2</sub> ) + 20 H(                             | $\frac{(C=N)[53 \text{ K}(C=N) + 16 \text{ K})}{(C=N)}$ |
| Assignments (PED, %)                      | stretch [v(NH)][99K(N—H)]         | stretch [v(OH)][100 K(OH)]          | stretch [v(OH)][100 K(O-H)]         | stretch [v <sub>CH</sub> ][98 K <sub>(C—H)<sub>x</sub>]</sub>         | stretch [v(CH)][99 K(C—H) <sub>x</sub> ]         | stretch [v(CH)][99 K(C—H) <sub>x</sub> ]         | stretch [v(CH)] [99 K(C—H) <sub>x</sub> ]         | stretch [v(CH)][98 K(C—H),]                      | stretch [v(CH)][99 K(C—H) <sub>[1</sub> ]        | stretch [v(CH)][99 K(C—H)t]                      | stretch [v(CH)][99 K(C—H)t]         | stretch (methyl), asymmetric [v(CH)][99             | stretch (methyl), asymmetric [v(CH)][99             | stretch (methyl), symmetric [v(CH)][97                          | cend [v(NH)][21 H(H—N—C <sub>2</sub> ) + 20 H(                          | tretch [v(C=N)][53 K(C=N) + 16 K(                       |
| Assignments (PED, %)                      | VH stretch [v(NH)][99K(N—H)]      | OH stretch [v(OH)][100 K(O—H)]      | OH stretch [v(OH)][100 K(O—H)]      | 7H stretch [vcH][98 K(c_H),]                                          | CH stretch [v(CH)][99 K(C—H) <sub>x</sub> ]      | TH stretch [v(CH)][99 K(C—H) <sub>x</sub> ]      | 3H stretch [v(CH)] [99 K(C—H) <sub>x</sub> ]      | CH stretch [v(CH)][98 K(C—H),]                   | CH stretch [v(CH)][99 K(C—H),]                   | 7H stretch [v(CH)][99 K(C—H),]                   | "H stretch [v(CH)][99 K(C—H),]      | H stretch (methyl), asymmetric [v(CH)][99           | TH stretch (methyl), asymmetric [v(CH)][99          | "H stretch (methyl), symmetric [v(CH)][97                       | 1H bend [v(NH)][21 H(H—N—C <sub>2</sub> ) + 20 H(                       | N stretch [v(C=N)][53 K(C=N) + 16 K(                    |
|                                           | NH suetch [v(NH)][99K(N—H)]       | OH stretch [v(OH)][100 K(O—H)]      | OH stretch [v(OH)][100 K(O—H)]      | CH stretch [v <sub>CH</sub> ][98 K <sub>(C—H)x</sub> ]                | CH stretch [v(CH)][99 K(C—H) <sub>x</sub> ]      | CH stretch [v(CH)][99 K(C—H) <sub>x</sub> ]      | CH stretch [v(CH)] [99 K(C—H) <sub>x</sub> ]      | CH stretch [v(CH)][98 K(C—H),]                   | CH stretch [v(CH)][99 K(C—H) <sub>1</sub> ]      | CH stretch [v(CH)][99 K(C—H) <sub>t</sub> ]      | CH stretch [v(CH)][99 K(C—H),]      | CH stretch (methyl), asymmetric [v(CH)][99 K(Cr-H)] | CH stretch (methyl), asymmetric [v(CH)][99 K(C,—H)] | CH stretch (methyl), symmetric [v(CH)][97 K(C <sub>1</sub> —H)] | NH bend [v(NH)][21 H(H—N—C <sub>i</sub> ) + 20 H(C <sub>ox</sub> —N—H)] | CN stretch $[v(C=N)][53 K(C=N) + 16 K(C=C)_x]$          |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           | 3367 NH stretch [v(NH)][99K(N—H)] | 3307 OH stretch [v(OH)][100 K(O—H)] | 3307 OH stretch [v(OH)][100 K(O—H)] | 3066 CH stretch [v <sub>CH</sub> ][98 K <sub>(C-H)<sub>x</sub>]</sub> | 3060 CH stretch [v(CH)][99 K(C—H) <sub>x</sub> ] | 3060 CH stretch [v(CH)][99 K(C—H) <sub>x</sub> ] | 3060 CH stretch [v(CH)] [99 K(C—H) <sub>x</sub> ] | 3043 CH stretch [v(CH)][98 K(C—H) <sub>l</sub> ] | 3037 CH stretch [v(CH)][99 K(C—H) <sub>1</sub> ] | 3037 CH stretch [v(CH)][99 K(C—H) <sub>1</sub> ] | 3037 CH stretch [v(CH)][99 K(C—H),] |                                                     |                                                     |                                                                 | 1777 NH bend [v(NH)][21 H(H—N—C <sub>0</sub> ) + 20 H(                  |                                                         |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     | 2916 CH stretch (methyl), asymmetric [v(CH)][99     | 2915 CH stretch (methyl), asymmetric [v(CH)][99     | 2868 CH stretch (methyl), symmetric [v(CH)][97                  |                                                                         | 1719                                                    |
|                                           |                                   | 3307                                | 3307                                |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         | 1719                                                    |
|                                           | 3367                              | 3307                                | 3307                                | 3066                                                                  | 3060                                             | 3060                                             | 3060                                              | 3043                                             | 3037                                             | 3037                                             | 3037                                | 2916                                                | 2915                                                | 2868                                                            | 7771                                                                    | 1719                                                    |
|                                           | 3367                              | 3307                                | 3307                                | 3066                                                                  | 3060                                             | 3060                                             | 3060                                              | 3043                                             | 3037                                             | 3037                                             | 3037                                | 2916                                                | 2915                                                | 2868                                                            | 7771                                                                    | 1719                                                    |
|                                           |                                   |                                     |                                     |                                                                       |                                                  |                                                  |                                                   |                                                  |                                                  |                                                  |                                     |                                                     |                                                     |                                                                 |                                                                         |                                                         |
|                                           | 3367                              | 3307                                | 3307                                | 3066                                                                  | 3060                                             | 3060                                             | 3060                                              | 3043                                             | 3037                                             | 3037                                             | 3037                                | 2916                                                | 2915                                                | 2868                                                            | 7771                                                                    | 1713 w · · 1719                                         |
| Calculated<br>er Wavenumber<br>(IR-Raman) | 3367                              | 3307                                | 3307                                | 3066                                                                  | 3060                                             | 3060                                             | 3060                                              | 3043                                             | 3037                                             | 3037                                             | 3037                                | 2916                                                | 2915                                                | 2868                                                            | 7771                                                                    | 1719                                                    |

| Species | Observed Calculated<br>Species Wavenumber (IR) (IR-Raman) | Calculated<br>Wavenumber<br>(IR-Raman) | Assignments (PED, %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-----------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A'      | 1684 m                                                    | 1691                                   | CN + CC stretch [v(CC), v(CN)] + [39 K(C_C), + 21 H(C_C), the stretch [v(CC), v(CN)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A,      | 1675 m                                                    | 6991                                   | $CN + CC \text{ stretch } [v(CC) \ v(CN)][24 \ K(C-C) + 30 \ K(C) + 30 \ K(C-C) + 30 \ K(C) + 30 \ K(C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ¥       | 1639 s                                                    | 1645                                   | CC stretch [v(CC)] $35 \text{ K(C-C)}_1 + 33 \text{ H(C-C-H)}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *       | 1611.s                                                    | 1610                                   | CC stretch [v(CC)] [49 K(C—C) <sub>x</sub> + 17 K(C—C) <sub>t</sub><br>+ 14 H(C—C—H) <sub>x</sub> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ¥       | 1592 s                                                    | 1600                                   | CC stretch [v(CC)][77 K(C—C), + 17 H(C—C—H).1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| À       | 1592 s                                                    | 1595                                   | CC stretch [v/CC)][54 K(C—C) <sub>x</sub> + 21 K(C—C) <sub>t</sub><br>+21 H(C—C—H) <sub>x</sub> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A,      | 1576 w                                                    | 1571                                   | CC stretch [v(CC)][41 K(C—C) <sub>x</sub> + 34 H(C—C—H) <sub>v</sub> .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A'      | 1564 w                                                    | 1564                                   | CC stretch [v(CC)][58 K(C—C) <sub>x</sub> + 11 K(C—C) <sub>t</sub> + 11 H(C—C—H) <sub>-1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A'      | 1564 w                                                    | 1557                                   | CC stretch [v(CC)][51 K(C—C) <sub>t</sub> + 18 K(C—C) <sub>t</sub> + 15 H(C—C—H).1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Α,      | 1517 s                                                    | 1517 (                                 | CC stretch [v(CC)][29 K(C—C) <sub>t</sub> + 15 K(C—C) <sub>r</sub> + 14 H(C—C—H).1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A'      | 1491 s                                                    | 1478 (                                 | CC stretch [v(CC)][46 K(C—C) <sub>x</sub> + 10 K(C—C) <sub>t</sub> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Α",     | 1452 m                                                    | 1452 (                                 | CH bend (methyl) [&(CH)][93 H(H—C—H) + 7 H(C—C—H)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ,ν      | 1429 m                                                    | 1450                                   | CH bend (methyl), asymmetric [8(CH)][89 H(H—C,—H) + 5 H(C—C,—H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Α,      | 1393 s                                                    | 1401 C                                 | CC stretch [v(CC)][15 K(C—C) <sub>x</sub> + 15 K(C—C) <sub>1</sub> + 14 K(C <sub>2</sub> —C) <sub>1</sub> + 5 K(C <sub>2</sub> N) <sub>1</sub> ≤ W(C <sub>2</sub> C <sub>1</sub> N) <sub>2</sub> ≤ W(C <sub>2</sub> N) <sub>2</sub> ≤ W(C <sub>2</sub> C <sub>1</sub> N) <sub>2</sub> ≤ W(C <sub>2</sub> |
| Α'      | 1393 s                                                    | 1400                                   | CC stretch [v(CC)][30 K(C—C) <sub>x</sub> + 14 K(C <sub>ox</sub> —C <sub>t</sub> )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Α'      | T393 s                                                    | 1395 C                                 | CH bend (methyl), symmetric [&CH)1[52 H(C_C_H) ± 43 H/H C 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|         | Observed                                      | Calculated               |                                                                                                                                                                      |
|---------|-----------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species | Species Wavenumber Wavenumber (IR) (IR-Raman) | Wavenumber<br>(IR-Raman) | Assignments (PED, %)                                                                                                                                                 |
| Ä       | 1013 m                                        | 1019                     | NO stretch [v(NO)][55 K(N—O) + 16 K(C <sub>ox</sub> —C <sub>ox</sub> )]                                                                                              |
| Α",     | 994 m                                         | 8                        | CH o.p. bend. $[\gamma(C)][72 P(C)_1 + 15 T(C-C)_1]$                                                                                                                 |
| À       | 972 m                                         | 972                      | CH bend (methyl) [δ(CH)][83 H(C—C—H <sub>D</sub> ]]                                                                                                                  |
| Α".     | 957 s                                         | 955                      | CH o.p. bend. [y(C)][51 P(C), + 40 H(C—C,—H,) + 14 T(C—C), ]                                                                                                         |
| ¥       | 904 m                                         | 016                      | NO stretch [v(NO)][36 K(N—O) + 12 K(C—C),]                                                                                                                           |
| Α,,     | 890 m                                         | 890                      | CH o.p. bend. $[Y(C)[81 P(C)_x + 10 T(C-C)_x]$                                                                                                                       |
| ×       | 851 w                                         | 850                      | CN stretch [v(C <sub>ox</sub> N)][48 K(C <sub>ox</sub> —N) + 32 F(C <sub>ox</sub> —N/C <sub>ox</sub> —N—C <sub>i</sub> ) + 15 H(C <sub>ox</sub> —N—C <sub>i</sub> )] |
| ¥       | 830 s                                         | 824                      | NO stretch [v(NO)][23 K(N—O) + 22 K(C—CH <sub>3</sub> ) + 36 K(C—C),]                                                                                                |
| Α",     | 818 s                                         | 814 (                    | CH o.p. bend. $[\gamma(C)][87 P(C)_x + 10 T(C-C)_x]$                                                                                                                 |
| Α".     | 799 m                                         | 795 (                    | CN torsion $[\tau(CN)][49 \text{ T(NC}_i) + 30 \text{ P(C)}_i + 18 \text{ P(N)}]$                                                                                    |
| Α".     | 761 m                                         | 783 (                    | CC o.p. bend. $[\gamma(C)][29 P(C_{ox}2) + 22P(C_{ox}1) + 26 P(C)_x]$                                                                                                |
| Α"      | 731 m                                         | 739 (                    | CH o.p. bend. [y(C)][80 P(C) <sub>t</sub> + 18 T(C—C) <sub>t</sub> ]                                                                                                 |
| Α,      | 721 m                                         | 734 (                    | CCI stretch [v(CCI)][25 K(C—CI) + 36 K(C—C) <sub>x</sub> + 16 H(C—C—C) <sub>x</sub> ]                                                                                |
| , V     | 704 w                                         | 720. N                   | NO stretch [v(NO)][17 K(N—O) + 12 K(C—CH <sub>3</sub> ) + 13 K(N—C <sub>1</sub> ) + 13 H(C—C—C),]                                                                    |
| Α",     | .681 m                                        | 692 (                    | CC o.p. bend. $[\gamma(C)][26 P(C_{ox}2) + 22 P(C)_x + 12 T(C_{ox}=N) + 12 T(C_{ox})]$                                                                               |
| Α".     | w 199                                         | 663 C                    | CH o.p. bend. $[\gamma(C)][40 P(C)_t + 40 T(C-C)_d]$                                                                                                                 |
| Α′      | 630 w                                         | 621 C                    | CCI stretch [v(CCI)][24 K(C—CI) + 13 H(C <sub>ox</sub> =N—O) + 13 H(C—C—C), 1                                                                                        |
| Α"      | 576 m                                         | 589 C                    | CH o.p. bend. $[Y(C)][28 P(C)_x + 25 T(C-C)_x + 18 T(C_{ox}=N) + 2014 P(C_{ox}1)]$                                                                                   |